3.3 The M-Method

Example 3.3 illustrates that the starting basic solution may sometimes be infeasible. The Mmethod and the Two-phase method discussed in this and the next sections are methods that can find a starting basic feasible solution whenever it exists. Consider again an LPP where there is no desirable starting identity matrix.

$$\max \qquad x_0 = \mathbf{c}^T \mathbf{x}$$
subject to
$$\begin{cases} A\mathbf{x} = \mathbf{b}, \\ \mathbf{x} \ge 0. \end{cases}$$

where $b \geq 0$. We may add suitable number of artificial variables $x_{a_1}, x_{a_2}, \cdots, x_{a_m}$ to it to get a starting identity matrix. The corresponding prices for the artificial variables are -M for maximization problem, where M is sufficiently large. The effect of the constant M is to penalize any artificial variables that will occur with positive values in the final optimal solutions. Using the idea, the LPP becomes

$$\begin{aligned} &\max & z = \mathbf{c}^T \mathbf{x} - M \cdot \mathbf{1}^T \mathbf{x}_a \\ &\text{subject to} & \begin{cases} A\mathbf{x} + I_m \mathbf{x}_a = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}, \end{cases} \end{aligned}$$

where
$$\mathbf{x}_a = (x_{a_1}, x_{a_2}, \cdots, x_{a_m})^T$$
 and 1 is the vector of all ones. We observe that $\mathbf{x} = 0$ and $\mathbf{x}_a = \mathbf{b}$ is a feasible starting BFS. Moreover, any solution to $A\mathbf{x} + I_m \mathbf{x}_a = \mathbf{b}$ which is also a solution to $A\mathbf{x} = \mathbf{b}$ must have $\mathbf{x}_a = 0$. Thus, we have to drive $\mathbf{x}_a = 0$ if possible.

Example 3.4. Consider the LP in Example 3.3 again.

$$\mathbf{x}_0 = x_1 + x_2 - 0 \times 3 - \mathbf{M} \times \mathbf{b} = \mathbf{b} \times \mathbf{b}$$

$$x_1 + 2x_2 = 6$$

$$x_1, x_2 \ge 0 \times 3 \ge \mathbf{c} \times \mathbf{b} \times \mathbf{b}$$
Introducing surplus variable x_3 and artificial variables x_4 and x_5 yields,

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 4 \\ x_1 + 2x_2 + x_5 = 6 \end{cases}$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_2 + x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 4$$

$$x_2 + x_3 + x_4 = 4$$

$$x_3 + x_4 + x_5 = 6$$

$$\begin{cases} 2 x_1 + x_2 - x_3 + x_4 &= 4 \\ x_1 + 2x_2 &+ x_5 = 6 \\ x_0 - x_1 - x_2 &+ Mx_4 + Mx_5 = 0 \end{cases}$$

Now the columns corresponding to x_4 and x_5 form an identity matrix. In tableau form, we have

Notice that in the x_0 row, the reduced cost coefficients that correspond to the basic variables x_4 and x_5 are not zero. These nonzero entries are to be eliminated first before we have our starting tableau. After eliminations of those M, we have the initial tableau:

(1) (0)	x_1	x_2	x_3	x_4	x_5	b	
X2 0 1 4x4	2*	1	-1	/1	0	4	This 12
\times_1 \nearrow 0 \times_2 \times_5	1	2	0	0	1	6	a smy lex
x_0	-(1+3M)	-(1+3M)	M	0	0	-10M	toblean
We note that once on an	tif aid war all	-)	1			-10	,

We note that once an artificial variable becomes non-basic, it can be dropped from consideration in subsequent calculations.

(K) (* 2		x_1	$x_2^{}$	x_3 V_4 x_5	b	7. ¥
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	x_1	1	$\frac{1}{2}$	$-\frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2	1/2 =
av x of	$A-x_5$	0	$\frac{3}{2}^*$	$\frac{1}{2}$ $\left\langle \begin{array}{c} 1 \end{array} \right $	4	4 = 8
(x4) (x4)	x_0	0	$-\frac{1+3M}{2}$	$-\frac{1+M}{2}$ $\left\{\begin{array}{c}0\end{array}\right\}$	2-4M	13, 13
After we eliminate all	the artifi	cial va	ariables we	have 0	-4	

At this point all artificial variables are dropped from the problem, and $\mathbf{x} = [2/3, 8/3, 0]^T$ is an initial BFS. Notice that this is the same as Tableau 1 in Example 3.3. After one iteration, we get the final optimal tableau.

Thus the optimal solution is $\mathbf{x}^* = (6, 0, 8)^T$ with $x_0^* = 6$.

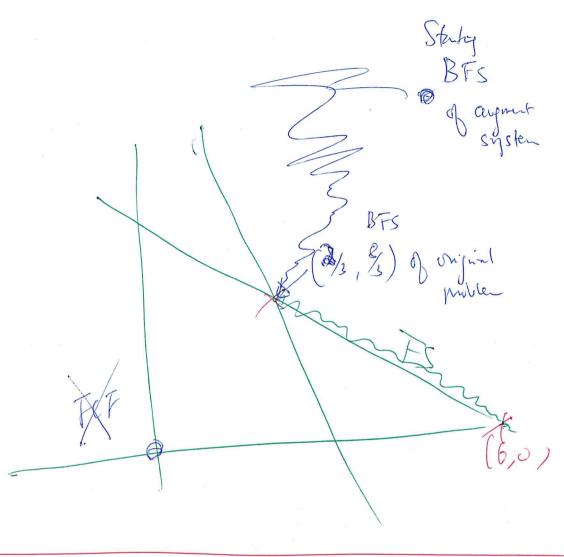
3.4 The Two-Phase Method

The M-method is sensitive to round-off error when being implemented on computers. The two-phase method is used to circumvent this difficulty.

PHASE I: (Search for a Starting BFS)

Instead of considering the actual objective function in the M-Method

$$z = \sum_{i=1}^{n} c_i x_i - M \sum_{i=1}^{m} x_{a_i} ,$$



Max
$$X_0 = X_1 + X_2 + 0X_5 - MX_4 - MX_5$$

Max $X_0 = M(\frac{1}{M}X_1 + \frac{1}{M}X_2 + \frac{0}{M}X_2 - X_4 - X_5)$

Please Max $X_0 = -X_4 - X_5$

Max $X_0 = -X_4 - X_5$
 $X_1 + X_2 - X_3 + X_4 = 5$
 $X_1 + 2X_2 + X_5 = 6$
 $X_1 + 2X_2 + X_5 = 6$

Super from Phase I